
SMC-TR-02-19 AEROSPACE REPORT NO. 
TR-99(8555)-10 

Semiclassical Description of Radiative Decay 
in a Colored Vacuum 

20 March 2002 

Prepared by 

J. C. CAMPARO 
Electronics and Photonics Laboratory 
Laboratory Operations 

Prepared for 

SPACE AND MISSILE SYSTEMS CENTER 
AIR FORCE SPACE COMMAND 
2430 E. El Segundo Boulevard 
Los Angeles Air Force Base, CA 90245 

20020422 240 
Engineering and Technology Group 

THE AEROSPACE 
CORPORATION 

El Segundo, California 

APPROVED FOR PUBLIC RELEASE; 
DISTRIBUTION UNLIMITED 



This report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691, under Con- 
tract No. F04701-00-C-0009 with the Space and Missile Systems Center, 2430 E. El Segundo Blvd., 
Los Angeles Air Force Base, CA 90245. It was reviewed and approved for The Aerospace Corpora- 
tion by B. Jaduszliwer, Principal Director, Electronics and Photonics Laboratory. Michael Zambrana 
was the project officer for the Mission-Oriented Investigation and Experimentation (MOIE) program. 

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the National 
Technical Information Service (NTIS). At NTIS, it will be available to the general public, including 
foreign nationals. 

This technical report has been reviewed and is approved for publication. Publication of this report 
does not constitute Air Force approval of the report's findings or conclusions. It is published only for 
the exchange and stimulation of ideas. 

Michael Zambrana 
SMC/AXE 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection ot information is estimated to average 1 hour per response, including the time (or reviewing instructions, searching existing data sources, 
qatherinq and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188) 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM 
TO THE ABOVE ADDRESS.  

1. REPORT DATE {DD-MM-YYYY) 
20-03-2002 

2. REPORT TYPE 

4. TITLE AND SUBTITLE 

Semiclassical Description of Radiative Decay in a Colored Vacuum 

6. AUTHOR(S) 

J. C. Camparo 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

The Aerospace Corporation 
Laboratory Operations 
El Segundo, CA 90245-4691 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Space and Missile Systems Center 
Air Force Space Command 
2450 E. El Segundo Blvd. 
Los Angeles Air Force Base, CA 90245 

3. DATES COVERED (From - To) 

5a. CONTRACT NUMBER 
F04701-00-C-0009 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

TR-99(8555)-10 

10. SPONSOR/MONITOR'S ACRONYM(S) 
SMC 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

SMC-TR-02-19 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Recently, there has been considerable interest in atoms confined to optical cavities or embedded within photonic band-gap 
materials, where the spectrum of vacuum fluctuations is modified. As a first step in extending traditional semiclassical 
methods into this regime, the present paper describes a semiclassical, density-matrix methodology for treating radiative 
processes in a low-Q cavity. This semiclassical approach is tested by comparing its predictions to the optical cavity 
experiments of Heinzen and Feld [Phys. Rev. Lett. 59, 2623 (1987)] and by calculating transient-nutation decay in free 
space induced by a broadband laser. The methodology is then used to examine transient nutation in a low-Q optical cavity, 
where it is found that the detuning between the atomic and cavity resonances has a significant effect on the transient nuta- 
tion's decay rate. 

15. SUBJECT TERMS 
Quantum electrodynamics, Cavity QED, Lasers, Photonic bandgaps 

16. SECURITY CLASSIFICATION OF: 

a. REPORT 

UNCLASSIFIED 

b. ABSTRACT 

UNCLASSIFIED 

c. THIS PAGE 

UNCLASSIFIED 

17. LIMITATION 
OF ABSTRACT 

18. NUMBER 
OF PAGES 

12 

19a. NAME OF 
RESPONSIBLE PERSON 

James Camparo 

19b. TELEPHONE 
NUMBER (include area 
code) 

(310)336-6944 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. 239.18 



Note 

The material reproduced in this report originally appeared in Physical Review A. The TR 
is published to document the work for the corporate record. 

Physical Review A, Vol. 65, 013815. © 2001 The American Physical Society. 

m 



PHYSICAL REVIEW A, VOLUME 65, 013815 

Semiclassical description of radiative decay in a colored vacuum 

James Camparo 
Department of Physics. California State University Dominguez Hills, 1000 E. Victoria Street, Carson, California 90747 
and Electronics and Photonics Laboratory, Tlie Aerospace Corporation. P.O. Box 92957. Los Angeles, California 90009 
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Recently, there has been considerable interest in atoms confined to optical cavities or embedded within 
photonic band-gap materials, where the spectrum of vacuum fluctuations is modified. As a first step in extend- 
ing traditional semiclassical methods into this regime, the present paper describes a semiclassical. density- 
matrix methodology for treating radiative processes in a \ow-Q cavity. This semiclassical approach is tested by 
comparing its predictions to the optical cavity experiments of Heinzen and Feld [Phys. Rev. Lett. 59, 2623 
(1987)] and by calculating transient-nutation decay in free space induced by a broadband laser. The method- 
ology is then used to examine transient nutation in a low-Q optical cavity, where it is found that the detuning 
between the atomic and cavity resonances has a significant effect on the transient nutation's decay rate. 

DOI: 10.1103/PhysRevA.65.013815 PACS number(s): 42.50.Lc, 03.65.Sq, 32.80.-t 

I. INTRODUCTION 

Although the semiclassical description of radiative pro- 
cesses is only a surrogate for quantum electrodynamics, 
semiclassical methods nonetheless remain a vital tool for 
studying field/atom interactions [l]. In particular, processes 
ranging from magnetic resonance [2] to optical pumping [3] 
to multiphoton ionization [4] are all well described using the 
semiclassical density matrix. Notwithstanding their present 
utility, however, semiclassical methods typically limit them- 
selves to situations in which a simple spontaneous-emission- 
decay term may be added to the appropriate equations in the 
fashion of a Weisskopf-Wigner approximation [5]. While this 
procedure is valid for treating spontaneous emission in free 
space, since the correlation time of vacuum fluctuations in 
that case is infinitely short-, it is at best problematic, and 
generally just wrong, when considering radiative processes 
in cavities or photonic bandgap materials where the atom's 
vacuum environment is modified. 

With the growing interest in radiative processes taking 
place within structured vacuum environments [6], it seems 
only natural to attempt an extension of semiclassical meth- 
ods into this regime. For example, given recent demonstra- 
tions of lasing in photonic band gaps [7], there could be 
value in describing photonic band-gap lasers by using stan- 
dard, semiclassical laser theory [8]. Additionally, with an eye 
on atomic clock applications, fully semiclassical methods 
could be used advantageously to describe the dynamics of 
atoms confined in high-Q optical cavities. Towards the even- 
tual goal of developing these computational techniques, the 
present work incorporates a semiclassical treatment of spon- 
taneous emission into the density-matrix equations in order 
to obtain a completely semiclassical methodology for de- 
scribing radiative processes in a colored vacuum (i.e.. a 
low-<2 cavity). The principal question to be addressed here is 
whether or not such a semiclassical approach is viable given 
the serious problems encountered in previous attempts [9]. 

The difficulty with the present program is that spontane- 
ous emission is fundamentally different from other relaxation 
processes [10], since transitions are only allowed from 
higher to lower energy eigenstates. This "microscopic re- 

versibility issue" is a major obstacle to all semiclassical 
theories of spontaneous emission [11], and in the present 
work we circumvent the problem by attributing spontaneous 
decay to two complementary Hermitian processes. For the 
first of these processes, the vacuum of QED is approximated 
by a classical zero-point field (zpf) [12], which induces di- 
pole transitions between atomic states. Additionally, so as to 
retain consistency with QED [13], we assume that the atom's 
interaction with the zpf causes it to emit a radiation-reaction 
field, which also induces dipole transitions. For higher- 
energy to lower-energy atomic transitions these two path- 
ways add constructively to produce spontaneous decay, while 
in the case of lower- to higher-energy transitions the two 
pathways destructively interfere, eliminating any possibility 
of "spontaneous excitation" [14]. 

In what follows, the density-matrix equations are obtained 
by averaging over the zero-point field and by assuming that 
the atom does not modify the zpf spectrum. This latter as- 
sumption restricts the present theory to situations where the 
correlation time associated with vacuum fluctuations is 
shorter than the atom's excited-state lifetime. The resulting 
density-matrix equations are therefore reminiscent of a 
master-equation-type approach to the problem, where the 
equations are obtained by tracing over reservoir states [15]. 
However, the Markov approximation is not invoked, so that 
in the case of strong fields the Rabi period can be equal to or 
smaller than the zpf correlation time. 

Following a derivation of the density-matrix equations in 
Sec. II, the semiclassical approach is tested in Sec. Ill by 
comparing its predictions of spontaneous emission and the 
Lamb shift in an optical cavity to the measurements of 
Heinzen and Feld [16]. The strong-field manifestation of the 
theory is then examined by computing an atomic popula- 
tion's transient-nutation decay in free space. In order to make 
this test a bit more difficult, we consider a situation in which 
the nutation is induced by a stochastic laser field (i.e., a 
phase-diffusion field), and then compare our results to well- 
established expectations. Finally, in Sec. IV transient nuta- 
tion in a colored vacuum is examined, and it is shown that 
the transient-nutation decay rate is strongly dependent on the 
detuning between the cavity and atomic resonances. While 
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this latter result is new, it is nonetheless consistent with the 
findings of Keitel et al. [17], who employed QED to examine 
resonance fluorescence in a colored vacuum. 

II. DENSITY-MATRIX EQUATIONS 

A. Semiclassical spontaneous emission 

For simplicity, we consider a two-level atom, where |l) is 
the ground state and |2) the excited state, and the energy 
separation between the two levels is ha>2\ ■ The perturbation 
acting on the atom is made up of three Hermitian terms: V , 
the perturbation due to dipole coupling between the atom and 
some real (e.g., laser) field; V°, the perturbation due to di- 
pole coupling between the atom and the classical zero-point- 
field construct: and Vm, the perturbation arising from the 
atom's interaction with its own radiation-reaction (RR) field 
[18]. Thus, we write the Liouville equation for the atom's 

density matrix in the interaction picture a as 

&=_!_[{VL+vo+vm)a] = &L+&o + &m^       (1) 

where V^e'^'Ve''"0'"' and H0 is the unperturbed 
atomic Hamiltonian. We note that by associating the vacuum 
and radiation-reaction fields with Hermitian operators in Eq. 
(1), we are in effect following a prescription of Dalibard. 
Dupont-Roc. and Cohen-Tannoudji [19]. These authors sug- 
gest that even though any ordering of creation/annihilation 
operators is valid in QED, a symmetric ordering provides the 
greatest physical meaning, since vacuum fluctuation and 
radiation-reaction terms in QED are then separately Hermit- 
ian. Such an ordering attributes one half of an atom's spon- 
taneous decay rate to interaction with the vacuum and the 
other half to interaction with the radiation-reaction field, 
similar to what is indicated by Eq. (1). 

Density-matrix evolution due to the real field is, of 
course, well known and leads in the rotating-wave approxi- 
mation to the standard radiative equations without relaxation 

terms: 

<x-,,= •Ülmlo-i^-'^'J 

,      '"ft     A 

(2a) 

(2b) 

Here, and in what follows, we consider the real field as aris- 
ing from a linearly polarized laser, so that AL is the detuning 
between the laser and the atomic resonance (i.e., w- w2j); ft 
is the Rabi frequency associated with the laser/atom interac- 
tion, and the diagonal components of the density matrix have 
been normalized. Note that the atom's interaction with the 
real field defines a quantization axis for the atoms that we 
take as the x axis of our coordinate system. 

Turning to the atom's interaction with the zero-point field, 

the zpf electric field component £°, is written as a sum over 
modes s and polarizations X [14]: 

TTh 1/2 

£° = /'TT     2 Cs£xK^ 
L 

X [zsK exp( - io»st)-z?K exp(iov)], (3) 

where L is some large volume (eventually representing free 
space and not the volume of some experimental optical cav- 
ity), ESK is a polarization vector, ws is the frequency of the 
sth mode, and the zxK are independent, mean zero, complex 
random variables: (:.s\Zr/J}

::=(z's\Zr/J}
:=0 and {z^z',:^) 

= ösrSKfi [14]. Cs is a relative modal amplitude for the zpf 
associated with its coloring by an optical cavity as will be 
discussed more fully below. 

As mentioned above, the atomic dipole moment ß is ori- 
ented in space due to the atom's interaction with the laser 
field. Thus, the zpf perturbation on the atom becomes 

V°  —<«|/Z-E°|/»> 

TTh 1/2 

= -'>«/?( TTl    2 Cs(x-isk) 

X Jül'sk exP(_'>*')-z?k exp( ;>/)].      (4) 

In standard fashion, Eq. (4) may be employed in the Liou- 
ville equation in order to obtain 

(5) XRe{<7,2Sjx exp(-/<V)} 

for the evolution of the excited-state density-matrix element, 

where Ss^(ws—CJH), and 

1/2 

Ö"l2— —1/^21 tlL I       sK 

Xexp(/(5/)(crn-CT22) 

2 Cs(x-isK)^zl\ 

(6) 

for the coherence term of the density matrix. Note that in 
writing Eqs. (5) and (6), rapidly rotating terms have been 
ignored as they effectively average to zero over the time 
scale for density-matrix evolution. 

Proceeding to the radiation-reaction field's contribution to 
the evolution of the density matrix, we have VliR=-ß 

■ Em. Here, E^ is the radiation-reaction field emitted by the 
atom, which almost by definition is an atomic operator. In 
Ref. [14], the radiation-reaction field was written as an Her- 

mitian operator. 

rRR. ■^-j-j(ßH-Q-H-0ß). (7) 

Though this particular expression for E leads to a non- 
Herniitian perturbation, so that some modified form would 
be required in the present analysis, it is important to note that 
the radiation-reaction field operator of Eq. (7) is not gauge 
invariant [20]. This may be immediately recognized through 
the field's dependence on H0 [21]. Thus, even though each of 
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the terms in Eq. (1) has a clear physical interpretation (since 
they are all Hermitian), this interpretation would seem to 
depend on the choice of gauge. 

Though one might be tempted to view the gauge depen- 
dence of the radiation-reaction field as problematic for the 
present semiclassical approach, in actuality it should be seen 
as a requirement for its consistency with QED. Since vacuum 
fluctuations and radiation reaction are really just "two sides 
of the same coin" in quantum electrodynamics [13], any ap- 
pearance of separability between the vacuum and radiation- 
reaction fields must be illusory. In the present semiclassical 
approach, this manifests itself as a gauge dependence of 
£IiR. Thus, there is no radiation-reaction field that exists in- 
dependently of the vacuum in the semiclassical approach; it 
is only the present choice of gauge that allows for such an 
interpretation. 

Since £RR (and hence V**) is not gauge invariant, it is not 
a measurable quantity; it is simply a computational tool [20]. 
Thus, while we could attempt to devise a colored vacuum 
analog to Eq. (7), and then compute the perturbation's matrix 
elements as was done above for the zpf, there is really no 
point using that procedure if a more expedient approach may 
be found. Here, we take advantage of the fact that on aver- 
age radiation reaction and the zpf must constructively inter- 
fere to produce excited-state decay, while they must destruc- 
tively interfere to inhibit spontaneous excitation of the 
ground state [14,22]. Specifically, due to the linearity of 
density-matrix evolution, we assume that we can write the 
zpf-averaged evolution of any density-matrix element as 

<<^>zpf=</(<r11)) + <s(^:)>, (8) 

where / and g are arbitrary functions or linear operators. 
Then, by appealing to the fluctuation-dissipation theorem 
[23], we make the ansatz that 

so that 

(*aß)=-(f(<7u)) + (s(<ri2)) 

(ä-lß)^+(&Tß) = 0-(s(^2))- 

(9) 

(10) 

Evidence for Eq. (10) derives from the fact that it has the 
proper form to describe spontaneous decay in free space [14] 
and that it is consistent with the QED-derived relationship 
between radiation reaction and the electromagnetic vacuum 
[24]. In the present work, we obtain further validation for Eq. 
(10) a posteriori, when we compare the predictions of the 
semiclassical approach with experiment in Sec. III. (Further 
discussion of this ansatz is provided in the Appendix.) 

Proceeding, Eqs. (5) and (6) are averaged over the z,K 

yielding 

(&22}zPr-- 
7T 

1/2 

lM2ll|£p]      2   Cs(x-i öJÜ's 

X Re{(crl2z.,x}-ipi exp( - iSxt)} (11a) 

1/2 

<*?2>zpf=-|/*2il  *7*     2 Cs{x-isK)^.txp(i8st) 

X<~£(0-ll-<722))zpf- (Mb) 

(In what follows we will drop the zpf subscript on the angu- 
lar brackets, it being understood.) Considering for the mo- 
ment just the coherence term, we immediately obtain from 
Eq. (10) 

(&°n) + (^) = 2\/J-2i\[jJ7j    2 C,(*-isK)>fcexp(i3st) 

x<;>2:>. (12) 

In order to evaluate the correlation between the zpf and 
the density matrix in Eq. (12), we recognize from Eq. (1) that 

(z,Ko-aß(t)) = (zskcraß{0)) + j\zsK(&L+&°+ö-RR)aß)dt'. 

(13) 

In Eq. (13), we first note that the correlation between any 
single zpf mode and the density matrix should be small, 
since density-matrix evolution is influenced by a large num- 
ber of independent zpf modes. Thus, we make a (second- 
order) decorrelation approximation on the right-hand side of 
Eq. (13). such that for some function of the zpf random am- 
plitudes ylr(zsK) we have under the integral sign of Eq. (13) 

(V(zsK)(Taß)*(V(z,K))(<raß)- (14) 

We then get from Eqs. (2) and (14) (-rt(7^)s0. In this 
same spirit, we invoke a mean-field approximation with re- 
gard to the atom's radiation-reaction field [25], basically as- 
suming that VRR=(V/RR) due to the large number of zpf 
modes that contribute to this field. In combination with the 
decorrelation approximation, this mean-field approximation 
implies that &™->(ö-™). so that (zsk&™)->0. In this way, 
the (first-order) correlation between the density-matrix ele- 
ments and the zpf is given by the atom's direct coupling to 
the zpf. Thus, 

(ZsK^aßit))^ sk |  <raßdt 

'() 
(15) 

so that Eq. (12) becomes 

/    IT   \ "2 

(o-(i2> + (*™) = 21A2iI\rn)    2 C,(i-£sK)yfcrsexp(iSst) 

=,*/o'^')- (16) 

and Using Eq. (5), we are finally led to 
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<^2>+<^>=-f^U2il22c;(i-s,x)2^ 

X I  (crr(t'))cxp[i8s(t-t')]dt'. 

(17) 

Employing a similar line of argument for Eq. (11a). we 
obtain 

<^22> i/A->]ilrrn   2 cs(x-isK)\h>l 

xRe{ exp(-/Ssr)( :.,x | &°l2(t')dt' (18) 

which with the aid of Eq. (6) becomes 

2TT ,2V 

X I [(au(t'))-(cr„(t'))]cos[Sx(i-t')]clt'. 
h 

(19) 

Then, employing Eq. (10), we obtain 

477 
M2il22 C;(A--£.VX)

2
WJ (Ä) + (d^)=-    hLi 

{a22(t'))cos[Ss(t-i')]dt'.   (20) X 

For the numerical computations to follow, it will be more 
convenient to express the length L appearing in Eqs. (17) and 
(20) in terms of a zpf-mode spacing Aw,. Thus, since L3 

= 2TT2c:,/w;1Aa>i, these two equations become 

/~° \-i_/~RR\ —       ~      ■' 

X I <<rP(/')>exp[/<5,(/-f')]d/\ 

(21a) 

(&°22) + (&22)=- 
2o);|Awv f 

irhc IM21 2il:2 CJCA'-E^)
2 

X I  (a„(t'))cos[S,(t-t')]dt\    (21b) 
/o 

B. Colored vacuum 

In order to employ Eqs. (21), some account must be given 
of the vacuum environment in which the atoms find them- 
selves. Specifically, the Cv and (x-£sk) must be evaluated. 
Here, as illustrated in Fig. 1, we restrict our attention to an 
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d 

Mirror 

Laser propagation 

FIG.  1.  Illustration showing cavity geometry and coordinate 

ensemble of atoms placed in the center of a confocal Fabry- 
Perot etalon. Remembering that in the present approximation 
to QED, the zpf is a real field, it is fairly straightforward to 
describe the effect of the cavity on the zpf: as the cavity is 
assembled, some of the zpf modes of free space suffer con- 
structive and destructive interference as they reflect off the 
mirror surfaces. For those modes with |cos(f?v)|^cos(ö,.), 
where 6S is the polar angle for the 5th mode's wave vector 
and 6C is a critical angle associated with the cavity geometry, 
it is straightforward to show that 

F=(I-K: i + 
AR 

d-R)- 
sin" 

1 
-—.   (22) 

Here. R is the mirror reflectivity and d is the cavity length. 
Alternatively. Cs equals unity for the modes with |cos(0,)| 
<cos(0r). The linewidth of the confocal etalon (half width at 
half maximum) for the field evaluated at the center of the 
cavity is 

Aü>c = -jsin" 
(1-/?) 

!>/* 
(23) 

and its free spectral range is just did. 
Since the above density-matrix analysis has assumed that 

the C, are unrelated to the density-matrix elements (i.e., that 
the atom's dynamics do not influence the zpf modal ampli- 
tudes within the cavity), the present theory requires 
Aa)c/ynd> 1, where yrad is the spontaneous decay rate in the 
cavity. In other words, the present theory assumes that the 
time scale for the zpf to reach equilibrium within the cavity 
is shorter than the time scale for the atom to perturb the zpf 
by its (real) radiative field. It is to be noted, however, that 
this is not a fundamental limitation to the present semiclas- 
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sical approach, as in principle it should be possible to relate 
the Cs to the atom's dynamics. 

To determine (x-ssK), we consider a cavity orientation as 
illustrated in Fig. 1, with the cavity axis parallel to z so that 
the laser field does not couple into the etalon. Then, defining 

k~s as the wave vector of the 5 th zpf mode, we have 

c]{6,)2 (x-isS-=c2
s(es) 

(x-ksy 

\ks\2 \ 

= C;(0J[l-sin2(0,)cos2(<p,)], 

(24) 

where tps is the azimuthal angle for the sth mode"s wave 
vector and we have specifically indicated the Cs dependence 
on 6S. Averaging Eq. (24) over 477 sr [26], 

V,= -r- f C2(0)[l-sin2(0)cos2(0)]sin(0)J0J<p 
47T J 

3U;-l) 
= J1K. cos( ec)+■ 

COsVc) 
(25) 

Thus, in the colored vacuum of a confocal etalon Eqs. (21) 
become 

<^2>+<^>--^?M2fV.2('')> 
~ll C JO 

2 VsUsexp[iSs('-t')] dt' (26a) 

and 

(^) + (^) = _^_^|Al;ii:r((722(r')> 
Ttnc Jo 

2 T^WjCosf^r-O] dt'. (26b) 

C. Numerical considerations for density-matrix computations 

To employ Eqs. (26) in a numerical simulation, account 
must be taken of the discrete time step employed in the simu- 
lation and the necessity for employing a finite number of zpf 
modes. In our paper, we first define a time scale T over 
which we wish to simulate the atomic dynamics, and then 
discretize this into elements of length ST. The ST are small 
enough so that the density-matrix elements do not change 
significantly over this interval. We then define the two field 
functions Fc(t) and Fs(t) that are required by Eqs. (26): 

/\-(0 = X ys(<»2i+ Ss)cos(Sst) 

and 

^•(/) = 2  Vs((o2[+S,)sm(Sst) 

Averaging these over the time step ST, we obtain 

Fc(0 = Z  ——— sin —-— 
SjST \   2   ) 

cos(<V)   (28a) 

and 

„   IrjJw-n+S,)     I SSST\ 
F*(') = ? SST       ^(^P^A   (28b) 

which are the field functions actually employed in the nu- 
merical simulations. 

The effect of this averaging process is to multiply each of 
the zpf modes by a sine function [i.e., smc(x) = sin(x)/x], 
which is just the Fourier transform of the discrete time step 
employed in the simulation. We can therefore limit the range 
of modes in the summation by choosing the two values of Ss 

where the sine function has its first zero, since for larger 
values of \SS\ the averaging process causes the modes to 
have negligible amplitude. Thus, to compute the zpf func- 
tions we need only specify the modal spacing Au>s and the 
time step ST, and once computed the zpf functions are in- 
corporated into the density-matrix equations just like any 
other discretized time function. Simulations are, of course, 
repeated for various values of A w v and ST to ensure that the 
results do not depend on the specific numerical parameters. 

D. Full density-matrix evolution 

Combining Eqs. (2), (26), and (28), we obtain the semi- 
classical density-matrix equations for the evolution of a two- 
level atom in the presence of a real (possibly strong) field in 
a colored vacuum: 

(j22=-flIm[o-12e  '**■'] _a„3    1M2I1 
TTilC* 

<T22(t')Fc(t-t')dt' (29a) 

and 

crl2= — e'AL'(2a22 D- 
u,'|A<tij 

7rhcJ l/*2ll 

X     ar(t')[Fc(t-t') + iFs(t-t')]dt'.   (29b) 
Jo 

(Here, and in what follows, we drop the angular brackets 
indicating an average over the zpf. this now being under- 
stood.) To put these into a more recognizable form, we let 

<712-^o-12<?'4/-', so that 

a) 
2w;,Ao>v 

TTÜC- 

X \'aAt')Fc(t-t')dt' 
Jo 

b) 
and 
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'12- iALcrl2+ -z~(-o~22~ 0" 
w;,A I""7.* , 

■nhc T-IM21I 

X f'ar(t')e-iA^-''>[Fc(t-t') + iFs(t-t')]dt'. 
Jo 

(30b) 

E. Lamb shift 

Though it may not be readily apparent, a Lamb-shift term 
for the two-level atom is included in Eq. (30b). To demon- 
strate this, we need only compare the first and last terms on 
the right-hand side of Eq. (30b). thereby recognizing that the 
imaginary part of the last term must act like a zpf detuning 

term: 

to^Ato, 
77va>ssin[(5v(/-/')] dt' 

(31) 

However, in order to obtain a more realistic evaluation of an 
atom's Lamb shift, specifically a cavity-induced change in 
the Lamb shift that may be compared to experiment, it is 
necessary to go beyond the two-level approximation and 
consider zpf-induced virtual transitions to other atomic 
states. 

Our starting point will be Eq. (32) from Ref. [14], which 
describes the zpf-induced evolution of an excited-state am- 
plitude, bm, up to second order in perturbation theory. (The 
b„, are expansion coefficients of the atomic wave function in 
terms of its unperturbed basis states, averaged over the zpf.) 
Specifically, 

,•0/   v ^'"iV   1 rV 3   „~ik,i ['ik.i'jft 

,ik2, ('e-ih>'dt' 
Jo 

+ «?'' (32) 

where m and /; refer to unperturbed energy eigenstates, k{ 

= wv- wm„ and k2=ws- wnm . In writing Eq. (32), the origi- 
nal equation from Ref. [14] has been modified so as to make 
it applicable to a colored vacuum; it has been averaged over 
477 sr, and rapidly oscillating terms in the sum over states 
have been averaged to zero. Recognizing that the imaginary 
term of Eq. (32) corresponds to the Lamb shift of \m), 

A Lamt>> il ls straightforward to show that 

ALainb=Im lirhc-  ™ — 2J      V.^'s\^mn\~ 

_c-<v 
ik\ 

l-e ik^r 

ikn 
(33) 

where the prime on the sum indicates that only nonzero 
terms of £, and k2 are included, as the null values yield real 
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terms in Eq. (32). In the limit of /—<» and Aa>,->0, the 
modal sum of the exponential terms in fc, and k2 equals zero, 

so that we have 

Aw, v , . 
hmALamb=-^3 2/    VAPmnl 
/—.CD 

(34) 

To include mass renormalization into Eq. (34) [22], we 
recognize that in the limit of large-frequency zpf modes, 

^Lamb- 
Atoj  v 

Trhc    .VII 
VAVmn\~ws(»nm (35) 

Subtracting Eq. (35) from Eq. (34) then yields an expression 
for the observable Lamb shift of \m). 

_Ato^Y'     I 
TTKC" 

12    3 
Mm« I   wnm' to -w„ 

(36) 

Though Eq. (36) is logarithmically divergent, and would 
require a high-frequency cutoff for evaluation, it should be 
recognized that our interest is not in the Lamb shift itself but 
in the change in the Lamb shift caused by a colored vacuum. 
We, therefore, define the Lamb shift change S^^ as 

-^Lamb sA cavity _ A free space 
Lamb ^Lamb (37) 

Since 77, = 2/3 in free space, 

A a), 
cm       _ 
ÖLamb      TThc" jT V,- jllAnml 

(38) 

where the superscript on S^b indicates that this value is 
specific to the energy eigenstate \m). Since the cavity's mir- 
ror reflectivity must go to zero for either very low or very 
high frequency zpf modes. 77, asymptotes to 2/3 in the high- 
frequency limit thereby ensuring the convergence of <5Lamb. 

In order to evaluate the Lamb shift numerically, we can 
break the sum over zpf modes into two contributions, those 
within a cavity-free spectral range of the atom's resonance 
and those outside this range. For the zpf modes outside the 
range, we convert the sum over modes to an integral, thereby 

obtaining 

cm ,_ 
°Lamb     ^^ \t*>„ L(to)flrto+X   \Vj~J 

X 
to; A to. I <•>!, 

L{(x))d(x)\, (39) 

where w, and w;, are the low- and high-frequency cutoffs for 
the cavity mirror's reflectivity, respectively; w~, to+, and 
L(to) are given by 

FSR 
(40a) 
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L(u>) = 

FSR 

[i7(w)-f]w 

W--ÜJ,, 

and 

(40b) 

(40c) 

(41) Wy=W     +jA(Os. 

Note that Aco, is to be chosen so that a>y=± |«nm|. 

HI. VERIFICATION  OF THE SEMICLASSICAL 
APPROACH 

As a first check on the semiclassical description's validity, 
we compare the predictions of Eqs. (30) and (39) with the 
experiments of Heinzen and Feld [16], who passed a Ba138 

beam through an etalon and examined weak-field resonance 
fluorescence while the atoms were located between the etal- 
on's two concentric mirrors. Heinzen and Feld excited the 
6.s: lS0-6s6p 'P, transition at 553.5 nm. and recorded the 
width and central position of the fluorescence. In this way, 
they were able to obtain both the radiative decay rate of the 
excited state, yrad, and the change in the transition's Lamb 
shift for a quantum system perturbed by a colored vacuum. 
Their mirror's separation was 5 cm: the mirror diameter was 
1.88 cm, and the mirror reflectivities were low. Heinzen and 
Feld's results are reproduced in Figs. 2(a) and 2(b) as a func- 
tion of cavity detuning (triangles), where zero detuning im- 
plies that the cavity resonance overlaps the atomic reso- 
nance. The open circles in Fig. 2(a) correspond to the 
predictions of Eqs. (30) with Ü = 0, based on the cavity ge- 
ometry and mirror reflectivity parameters provided by Hein- 
zen and Feld [27]. For the theory, it was assumed that at time 
t = 0 the atom was in a superposition of the ground state and 
the excited state, and three decay rates were computed cor- 
responding to the three independent density-matrix elements. 
In all cases, the coherence and population decays were ex- 
ponential, and the computed decay rates of the coherence 
were half that of the population. 

The change in the Lamb shift was computed using Eq. 
(39), where we set 2irc/w, = 900nm and 2irclwh 

= 350nm. The mirror reflectivity was a constant value be- 
tween these wavelengths and zero outside this range. The 
relevant transitions for the Lamb shift calculation are shown 
in Fig. 3. and the corresponding dipole moments are col- 
lected in Table I; the indicated dipole moments come from 
the Einstein A coefficients of Niggli and Huber [28]. Two 
theoretical curves are shown in Fig. 2(b). For the solid curve, 
only the 553.5 nm transition was included in the Lamb shift 
calculation, while the dashed curve corresponds to inclusion 
of all transitions shown in Fig. 3. As might have been antici- 
pated based on an examination of the dipole moments, the 
6.v2 lS0-6s6p *P, transition has the greatest influence on 
the Lamb shift's change. 

The agreement between theory and experiment shown in 
Figs. 2(a) and 2(b) provides strong evidence for the weak- 
field validity of the present semiclassical description of ra- 

c 
o 
Q. 

W -1 0        12        3 
Cavity detuning, GHz 

x 
2 

w 

1 - 

0- 

:(b) ' l      l      l 

1   ' kVr I 

i     i 

i \"   i     i r'    i 
2-2      -1        0 1 2        3        4        5 

Cavity detuning, GHz 

FIG. 2. (a) Spontaneous decay rate in a cavity as a function of 
cavity tuning. Diamonds correspond to the data of Heinzen and 
Feld [16], while circles correspond to the present theory, (b) Lamb 
shift change in the cavity as a function of cavity tuning. Again, 
diamonds correspond to the data of Heinzen and Feld. For the solid 
line, only the 6s1 'S0-6s6p 'P| transition was included in the Lamb 
shift computation, while in the case of the dashed line all transitions 
shown in Fig. 3 were included. 

diative decay and the Lamb shift, especially when it is rec- 
ognized that no free parameters were employed in the 
density-matrix equations. However, what remains to be as- 
sessed is the semiclassical approach's validity in the case of 
strong field/atom interactions. In this regard, the present 
theory is most amenable to a computation of transient nuta- 
tion in a colored vacuum [29]. Unfortunately, no such experi- 
ments have been done, at least in cavities conforming to the 
present theory's limitations on cavity linewidth. Conse- 
quently, we have used the present theory to compute tran- 
sient nutation in free space, and for added rigor have consid- 
ered nutation induced by a stochastic laser field (i.e., a phase 
diffusion field or PDF). We compare our results to well- 
established expectations [30]. 

For a PDF of linwidth yF full width at half maximum, it 
is well known that the field's phase fluctuations enhance the 
coherence's relaxation rate while leaving the population re- 
laxation rate unaffected. Specifically, the transient-nutation 
sisnal for a two-level atom becomes 

(722(f) = Coo    1 

-Vt 

sin( 4>) 
(42) 

where  a^  corresponds  to   the  steady-state  value  of the 
excited-state population. Also, 
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413.2 nm 

FIG. 3. Partial energy-level diagram of barium. 

A 21 + 72 

X = 

r= 

a-- y2 — A: 
1/2 

and 

</> = tan    I -=• 

(43a) 

(43b) 

(43c) 

Here. y2 corresponds to the coherence decay rate, which 
according to well-established theory and experiment should 
equal (A2l+ yF)/2- and A2\ is the spontaneous decay rate in 
free space. 

In the test, we again considered laser excitation of the 
6s2 lS0-6s6p '/>, barium transition. The PDF was numeri- 
cally simulated for some given value of yF and the density- 
matrix equations were then solved numerically using a vari- 
able step-size Runge-Kutta-Fehlberg method [31]. The 
computed transient-nutation signal was averaged, and then 
using a nonlinear least squares procedure [32] was fit to Eq. 

TABLE I. Selected transition dipole moments for barium. Val- 
ues are inferred from the lifetime measurements of Niggli and Hu- 
ber [28]. 

Transition Dipole moment, \fi\ (esu cm) 

6.S-6/J '/Vö.r 
6.v8.v 'V6.v6/> 'P, 
6sld 'D2-6s6p '/>, 
6p2 *P0-6s6p '/>, 
5J6p ^Dr6s2 ]S0 

'S0 8.0X10_lh 

2. IX 10" ls 

3.6X10_IS 

2.8X10" ls 

5.8XJ0"'9 

'   I M I LLD 

0.01    0.1        1 10      100   1000 10,000 
Laser linewidth, FWHM 7F (MHz) 

FIG. 4. Atomic dephasing rate in free space as a function of 
phase-diffusion-field (PDF) linewidth. The solid line corresponds to 
expectations based on experiment and theory. The open circles cor- 
respond to the results of the present theory. 

(42) with y2 as the one free parameter. The results of the test 
are shown in Fig. 4 as open circles, where the value of y2 

from the numerical simulation is plotted as a function of the 
input value of yF. The solid curve in the figure corresponds 
to the expected value of y2, (A2x+yF)l-- The excellent 
agreement between the numerically simulated value of y2 

and (A^{+yF)/2 not only lends confidence to the present 
theory's" ability to simulate strong field/atom interactions, it 
also suggests that the semiclassical description of radiative 
decay may find application in simulating the effects of col- 
ored vacua in studies of the stochastic-field/atom interaction. 

IV. TRANSIENT NUTATION IN A COLORED VACUUM 

Given the previous section's evidence for the validity of 
the present semiclassical description of radiative decay, we 
now consider the decay rate of transient nutation in a colored 
vacuum. For the present study, we confine our attention to a 
monochromatic laser tuned to barium's 6s2 ]Sa-6s6p P, 
transition, and the cavity geometry of Heinzen and Feld [16]. 
As discussed above, when the cavity detuning from the 
atomic resonance Acav, equals zero, the population and co- 
herence decay rates in the weak-field limit are at a maxi- 
mum, with a value determined by the cavity's mirror reflec- 
tivity. Consequently, based on Eq. (43a) it was originally 
thought that the transient-nutation decay rate would be maxi- 
mized for Acav=0 with a value of 3yrad/4. Using the present 
work's weak-field results for yrad, this prediction is shown as 
the solid line in Fig. 5 as a function of mirror reflectivity. 

Transient-nutation decay in a cavity was investigated by 
numerically solving Eqs. (30a) and (30b) for Acav=0 using 
the parameter values listed in Table II. In order to determine 
the decay rate I\ we Fourier transformed the transient nuta- 
tion signal and determined the width of the Fourier spectral 
component at the nutational frequency. In this way the deter- 
mination of T was independent of any assumption regarding 
the functional form of the nutation signal in the cavity, as 
would have been the case had we fit the nutation signal to 
Eq. (42). The transient-nutation decay rates obtained in this 
way are shown as circles in Fig. 5. What is strikingly appar- 
ent is that the numerical results indicate a decay rate signifi- 
cantly different from the expected 3 yrad/4 values, and that 
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FIG. 5. Transient-nutation decay rate T in a cavity as a function 
of the cavity mirrors' reflectivity. The solid line corresponds to an 
anticipated value based on the extrapolation of weak-field cavity 
decay rates into the strong-field regime. Circles correspond to the 
results of the present theory for Acav=0. while diamonds corre- 
spond to the present theory for Acav=ü. 

for mirror reflectivities less than 0.5 the nutational decay rate 
is actually less than its free-space value. If the cavity is de- 
tuned from the atomic resonance by the Rabi frequency, then 
the decay rates shown as diamonds in Fig. 5 are obtained. In 
this case, transient-nutation decay in the cavity is faster than 

3 Trad/4. 
To gain a semiquantitative understanding of the nutational 

decay rate*s sensitivity to cavity detuning (and also to high- 
light the semiclassical approach's intuitive value), we rewrite 
Eq. (30a) for t> 1/A wc, so that the upper limit of integration 
may be replaced by +». Moreover, since we are considering 
nutation, to first approximation we can assume that the 
strong field causes ov, to oscillate at the Rabi frequency [i.e., 

<T22=cos(no]. This then yields 

<X-!->= ■ £t Im[o-12]- 
J2\ Aw, 

irtic IM2||2 °"22 
J -co 

r)Fc{T)dr, 

(44) 

where the integration variable has been redefined. In this 
form, the second term on the right-hand side of Eq. (44) has 
the appearance of a linear system's output [33]; that is. the 

TABLE II. Parameters used to compute transient nutation in a 
colored vacuum. 

Parameter Value 

cr:2(/ = 0), crl2(t = 0) 
Resonant wavelength 
Excited-state decay rate in free space, A2\ 
Transition dipole moment, |/x:,| 
Cavity length 
Mirror diameter 
Laser intensity 
Rabi frequency, ft 
Laser detuning from atomic resonance. AL 

Simulation time scale. T 
zpf time-scale discretization. 8T 

0 
553.5 nm 

1.19xi08sec~' 
!.02xi0~l8esucm 

5 cm 
1.88 cm 

100 W/cm: 

6.97xi0l,sec~' 
0 

100M:i 

7/8192 

atom appears to "filter" the vacuum field fluctuations, pro- 
ducing an output that forces the excited state to decay. 

Taking advantage of the convolution theorem [33], Eq. 
(44) can be reexpressed as 

tt);,Awj        ^ 
cr22=-n Im[c712]-^2^p-|/X2ih 

iz,(w)Qc{w)ei,"du>. (45) 
■+O0 

X  '       v 

where S->-> and Oc are the Fourier transforms of cr22 and Fc, 
respectively. Given the oscillatory form of cr22, it is clear 
that In is a sum of S functions: 

122(w) = TT[S(fl-cü)+S(fL + (o)], (46) 

which on substitution into Eq. (45) and recognizing that 
<£>c.(w) = <E>C(-to) yields 

<j22s=-ü Im[o-12]-rcr22(?), 

where 

_        WT|AO) 

r= ^p-lM2,l2*c(n). 

(47) 

(48) 

(Note that in the limit of zero cavity-mirror reflectivity, f 
^4too,|/ct21|

:/3Äc3, the Einstein A coefficient for |2) to |l) 
spontaneous decay in free space.) 

Thus in the semiclassical approach, the nutational decay 
rate in a colored vacuum is seen to arise from an "atomic 
filtering" of the vacuum field fluctuations, with the atom re- 
sponding principally to that Fourier frequency component of 
the vacuum's fluctuations corresponding to the Rabi fre- 
quency. When the cavity is tuned to the atomic resonance, 

Oc(n) and hence f can be relatively small. However, when 
the cavity is detuned from resonance by the Rabi frequency, 
4>t.(fl) is at its maximum value and nutational decay is 
rapid. It is to be noted that this conclusion is consistent with 
the works of Keitel et al [17] and Lewenstein, Mossberg, 
and Glauber [34], who employed QED to investigate the 
fluorescence triplet in a colored vacuum. Specifically, Keitel 
et al, found that the linewidth of the triplet's central compo- 
nent only depended on the vacuum spectral density at the 
Rabi sidebands. 

V. SUMMARY 

Given the history of past attempts to describe spontaneous 
emission semiclassically, I wish to emphasize that the pur- 
pose of the present work is not to propound some rival to 
QED. It has been known for decades that if matter is quan- 
tized, then consistency dictates quantization of the electro- 
magnetic field [35]. Rather, the purpose of the present work 
is simply to extend the range of problems that can be ad- 
dressed through semiclassical methods. Here, a semiclassical 
description of radiative decay has been incorporated into the 
density-matrix equations in order to develop a completely 
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semiclassical methodology for dealing with strong-field/atom 

interactions in a colored vacuum. 
One application of this methodology, which could have 

computational advantages over QED, would be investiga- 
tions into multiphoton processes taking place in a low-£> 
cavity, possibly driven by a stochastic field [36]. In this case, 
the advantage pertains to the complete problem, and not sim- 
ply to a calculation of vacuum effects. For example, since the 
stochastic character of a laser is (arguably) most easily mod- 
eled by treating the laser as a classical field, and thereby 
most easily connected to laboratory measurements, consis- 
tency would dictate that the vacuum field should also be 
treated classically in a stochastic-field/atom interaction prob- 
lem. Treating the vacuum field by using QED, while accu- 
rate, necessitates treatment of the stochastic laser as a quan- 
tized field, which is not always the simplest approach for this 
type of problem. In fact, it was the consideration of such 
problems that prompted our interest in the present work. 

Of course, it must be remembered that the present theory 
is only an approximation to QED, and therefore there are 
bounds on its range of validity. For example, by limiting our 
discussion to the two-level atom we have ignored much of 
the vector nature of spontaneous emission. While this could 
probably be accommodated within the semiclassical theory, 
there seems little to be gained at the present time by the 
added effort. Of greater significance is the present theory's 
focus on spontaneous decay and the assumption that the 
atom does not alter the zero-point field's spectral density. 
Specifically, taking a conservative point of view, we can only 
expect the semiclassical theory to agree with QED up to 
second order in the vacuum's perturbation. This in turn im- 
plies that the present theory should only be trusted to de- 
scribe effects associated with second-order vacuum field sta- 
tistics. Finally, it must be noted that in order to treat 
radiation-reaction in a simple way, the density-matrix equa- 
tions were averaged over the vacuum field. As a conse- 
quence, the density-matrix treatment presented here is lim- 
ited to problems that deal with one-time averages of the zpf, 
and therefore cannot account for processes that are associ- 
ated with two-time averages, for example, the resonance 

fluorescence triplet [37]. 
Before concluding, it seems worthwhile to suggest that 

the semiclassical methodology discussed here might find ap- 
plication beyond atomic and optical physics. For example, 
the present approach may prove useful in studying open 
quantum systems and the issues surrounding quantum deco- 
herence [38]. Complementing quantum-field treatments of 
this problem, the present semiclassical approach might pro- 
vide additional insights given its different intuitive appeal. 
Additionally, one could imagine using the present approach 
as a template for developing a semiclassical approximation 
to quantum gravity in order to study processes associated 
with the gravitational vacuum. In this vein, it is worth citing 
the work of Ross and Moreau [39]. who have discussed the 
characteristics of a classical, gravitational zero-point field in 
the context of an approximation to the real gravitational 
vacuum. Though both these possible applications of the 
present work are highly speculative, they do highlight the 

benefits to be gained by extending semiclassical methodolo- 

gies as far as possible. 
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APPENDIX 

In Ref. [14], the Schrödinger equation for an atom inter- 
acting with the zero-point field (zpf) of Eq. (3) and its own 
radiation-reaction field [i.e., Eq. (7)] was solved up to second 
order in perturbation theory. In typical fashion, the atomic 
wave function \<p) was expanded in terms of eigenfunctions 
of the unperturbed Hamiltonian |«) and the evolution of the 
expansion coefficients (or wave-function amplitudes) a„(t), 
under the influence of the two field-atom interactions was 
derived. Specifically, using overbars in this appendix to in- 
dicate an average over the zpf, it was found that 

|9> = Xä„(0e-/w"'l«>, (Al) 

with an the sum of a zpf term, azf and a radiation-reaction 

term a!*R such that 

■ PR a"     'V   1 12    3 

tzpf= —. 
3/i.c-1' \V-nr. 

:X 
(x)„ 

(A2a) 

(A2b) 

Of significance is the fact that the two rate terms interfere 
constructively to produce spontaneous decay, and interfere 
destructively to inhibit spontaneous excitation. 

In order to create a density-matrix that includes this 
constructive/destructive interference aspect of the atom's in- 
teraction with the zpf and its own radiation-reaction field, we 
would need to employ the zpf-averaged wave function of Eq. 

(Al): 

P,,M^I=2«^~;W"'"'I™>H-     (A3) 
mn 

Then, for a two-level atom it is straightforward to show that 
in a rotating frame, where p,,= 0-,-,-e""""'•'', 

<r<'> = 

Y0~22 ~~ "T°"l2 

—To--» 

(A4) 

Here. T is the spontaneous decay rate (i.e., 

4|/u..,,|2W2|/3fi.<::,), and we have normalized the density ma- 
trix."(Since the radiation-reaction perturbation of Ref. [14] is 
non-Hermitian. population from the excited state is lost un- 
less the requirement of normalization is imposed on the den- 
sity matrix.) As is obvious from Eq. (A4), construction of the 
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density matrix from the zpf-averaged wave function yields 
the proper spontaneous decay behavior. 

In a density-matrix treatment of stochastic processes, 
however, it is customary to employ the atomic wave func- 
tions prior to stochastic averaging. The ensemble average 
behavior of the atomic system is then obtained by averaging 
the density-matrix elements over the stochastic process [40]. 
In this fashion, which is essentially that of the present work, 
we obtain 

P(2)=I<P><<P| = 2 a^e'^'lmXnl (AS) 
mn 

or in the rotating frame 

,(2) = k><«p| = 2 ama*\m)(n\ (A6) 

The problem with cr<2) for describing spontaneous emission 
semiclassically is that the constructive/destructive interfer- 
ence aspects of the zpf and radiation-reaction perturbations 

will not be manifested in the a,„a* terms if the perturbations 
of Ref. [14] are employed. Basically, if we are to inhibit 
spontaneous excitation through the interference mechanism, 
then we need to average over the wave-function amplitudes 
and not the probabilities for an atom being in a specific state. 

An expedient solution to this density-matrix averaging 
ambiguity lies in the fact that the radiation-reaction pertur- 
bation is not gauge invariant, which implies that it is only a 
computational tool. Therefore, we have some liberty to de- 
fine this perturbation so as to make the evolution of cr,:) 

consistent with the evolution of cr(I).  Considering for the 

moment just the diagonal components of the density matrix 
cri2\ we can write their evolution as the sum of a zpf- 
induced evolution and a radiation-reaction evolution: 

&f = äfaf + ä^af + c.c. (A7) 

We then employ our freedom on the form of the radiation- 

reaction perturbation to write d, a',=-ä,pa, and a2 aj 

= ä*vta'n, which is just the ansatz of Eq. (9). In this way, 
spontaneous excitation of the ground state is inhibited while 
spontaneous decay of the excited state proceeds with the 
proper rate. 

In order to show that the above choice of radiation- 
reaction evolution leads back to Eq. (A4), we can consider 
Eqs. (26) in the case of free space, where 77= 2/3. In that 
situation, since the sum over zpf modes will be dominated by 
terms with SS = Q, we can let a^—>w2i so that 

öW=-T- fVf^OX e'^'-''W\   (A8a) 
277 Jo       - j = 0 

&{,V=~- Po-£V)2   cos[Ss(t-t')]Aajsdt'. 

(A8b) 

Changing the sum over modes to an integral, and ignoring 
terms associated with the Lamb shift, Eqs. (A8) yield &\\] 

= -kTcr\V and &2\
)== — Tcr22 ' which with normalization 

yields a density-matrix evolution that is equivalent to the 
&(" of Eq. (A4). 
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